

A denumerable Hausdorff space which is connected

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
Webpage <http://squash.1gainesville.com/>
1 February, 2022 (at 19:37)

(This example is from Moe Hirsch; the details are routine. After working this out, I found this example in the book “Counterexamples in Topology”. It is the *Relatively Prime Integer Topology*, example #60 on p.82, which includes a lot more than I have here. A quite different example is #75, p.93, the *Irrational Slope Topology*.)

Remark. For a connected space Ω , any continuous image is connected. So if Ω is countable, then any continuous map $f: \Omega \rightarrow \text{MetricSpace}$ is constant. Conversely, were Ω disconnected it would have a continuous image in a two point space.

The inevitable conclusion is that the space Ω of the title cannot be compact – for then it would be normal, and Urysohn’s lemma would provide a non-constant real-valued function. \square

Construction

Our space, Ω , is \mathbb{Z}_+ . Below, let x, y, a, b, c range over \mathbb{Z}_+ . Define \mathcal{B} to consist of the arithmetic progressions in Ω : Determined by a relatively-prime pair $x \perp a$, an **arithmetic progression** is of the form $x\mathbb{N} + a$; the set of all $xn + a$ with $n \in \mathbb{N}$. Let \mathcal{B} generate the topology.

\mathcal{B} is a basis; it is closed under pairwise intersection

Suppose $U := x\mathbb{N} + a$ and $V := y\mathbb{N} + b$ are not disjoint. Let $c := \text{Min}(U \cap V)$. Evidently

$$1: \quad U \cap V \supset \text{LCM}(x, y)\mathbb{N} + c.$$

We now show equality in (1). Suppose $d \in U \cap V$; necessarily $d \geq c$. Since $d, c \in x\mathbb{N} + a$ then $d - c \in x\mathbb{Z}$ and so $x \mid [d - c]$; x divides $d - c$. Similarly $y \mid [d - c]$. Hence $\text{LCM}(x, y)$ divides $d - c$. Thus $d \in \text{LCM}(x, y)\mathbb{N} + c$. This establishes the reverse inclusion in (1) and hence equality.

The last step in showing that $U \cap V$ is in \mathcal{B} .

Note that $c \in x\mathbb{N} + a \implies c \perp x$, since $a \perp x$. Similarly $c \perp y$. Thus $c \perp \text{LCM}(x, y)$; hence $\text{LCM}(x, y)\mathbb{N} + c$ is indeed a member of \mathcal{B} . In particular, \mathcal{B} is a basis for the topology.

The topology is Hausdorff

Given distinct $a, b \in \mathbb{Z}_+$, choose a prime number, x , exceeding both. Then $x\mathbb{N} + a$ and $x\mathbb{N} + b$ are necessarily disjoint.

Ω is connected

It suffices to show, for any non-void open U and V , that their closures, \overline{U} and \overline{V} , intersect. Since \mathcal{B} is a basis, without loss of generality $U, V \in \mathcal{B}$. So it certainly suffices to show that

$$2: \quad \text{Cl}(x\mathbb{N} + a) \supset x\mathbb{Z}_+.$$

For then $\text{Cl}(x\mathbb{N} + a) \cap \text{Cl}(y\mathbb{N} + b) \supset x\mathbb{Z}_+ \cap y\mathbb{Z}_+$, which includes $\text{LCM}(x, y)\mathbb{Z}_+$ and hence is non-empty.

To prove (2), let $U := x\mathbb{N} + a$ and fix a point $x' \in x\mathbb{Z}_+$. To show that x' is in \overline{U} , we fix a basic neighborhood W of x' and prove that

$$2': \quad \text{Each neighborhood } W = y\mathbb{N} + b \text{ of } x' \text{ indeed intersects } U.$$

Observe that $y \perp b \implies y \perp x'$, which implies $y \perp x$. Hence –by the Euclidean algorithm– there exist integers m, n such that

$$kn - jm = a.$$

Moreover, without loss of generality m is positive. (Just replace “ m ” by $m + kk$, for a sufficiently large k , and replace “ n ” by $n + kj$.) Consequently

$$W \supset x' + y\mathbb{N} \ni x' + yn = x' + [a + jm].$$

But this latter is congruent modulo x to a . Thus W intersects $x\mathbb{N} + a$, which is U . \spadesuit